3 research outputs found

    Investigations into the interface failure of yttria partially stabilised zirconia - porcelain dental prostheses through microscale residual stress and phase quantification

    Get PDF
    Objectives: Yttria Partially Stabilised Zirconia (YPSZ) is a high strength ceramic which has become widely used in porcelain veneered dental copings due to its exceptional toughness. Within these components the residual stress and crystallographic phase of YPSZ close to the interface are highly influential in the primary failure mode; near interface porcelain chipping. In order to improve present understanding of this behaviour, characterisation of these parameters is needed at an improved spatial resolution.Methods: In this study transmission micro-focus X-ray Diffraction, Raman spectroscopy, and focused ion beam milling residual stress analysis techniques have, for the first time, been used to quantify and cross-validate the microscale spatial variation of phase and residual stress of YPSZ in a prosthesis cross-section.Results: The results of all techniques were found to be comparable and complementary. Monoclinic YPSZ was observed within the first 10m of the YPSZ-porcelain interface with a maximum volume fraction of 60%. Tensile stresses were observed within the first 150m of the interface with a maximum value of ≈ 300 MPa at 50m from the interface. The remainder of the coping was in mild compression at ≈ − 30 MPa, with shear stresses of a similar magnitude also being induced by the YPSZ phase transformation.Significance: The analysis indicates thatthe interaction between phase transformation, residual stress and porcelain creep at YPSZ-porcelain interface results in a localised porcelain fracture toughness reduction. This explains the increased propensity of failure at this location, and can be used as a basis for improving prosthesis design

    A study of phase transformation at the surface of a zirconia ceramic

    Get PDF
    Yttria Partially Stabilized Zirconia (YPSZ) is one of the most important engineering ceramic materials in that it displays a whole host of outstanding structural and functional properties. Of particular importance for load-bearing applications is the remarkable fracture toughness of YPSZ that arises from its ability to undergo martensitic transformation, a phase transformation that is dependent on stress, temperature, time, humidity, grain size, and the proximity of an interface. The present study was aimed at revealing the influence of the thermal ageing on the tetragonal to monoclinic phase transformation in the near-surface regions of YPSZ. In order to perform qualitative and quantitative characterisation of the phase composition, three principal microscopic techniques were employed: atomic force microscopy, depth resolved Raman micro-spectroscopy, and synchrotron X-ray diffraction. Satisfactory consistency was achieved between the results obtained using different techniques. Moreover, the data obtained in this way displayed complementarity that provided valuable input for the development of thermodynamic modelling of the complex inter-dependence between phase state and processing history of zirconia ceramics
    corecore